Assistant PRO
Requires Scripting PRO
The Assistant module provides a powerful set of APIs that allow users to request structured JSON data from an intelligent assistant.
This feature can be used for automation tasks such as extracting billing information, classifying expenses, parsing text, or recognizing image content.
isAvailable Variable
Description
Indicates whether the Assistant API is currently available.
- This status depends on the selected AI provider and whether a valid API key has been configured.
- If no valid API key is provided, the Assistant API will be unavailable.
requestStructuredData Method
Description
The requestStructuredData method allows you to send a natural language prompt and receive a structured data response that conforms to a defined JSON Schema.
It supports two forms:
- Text-only input
- Input with images — allows the model to analyze both textual and visual data
Syntax 1: Text Input Version
1function requestStructuredData<R>(
2 prompt: string,
3 schema: JSONSchemaArray | JSONSchemaObject,
4 options?: {
5 provider: "openai" | "gemini" | "anthropic" | "deepseek" | "openrouter" | { custom: string }
6 modelId?: string
7 }
8): Promise<R>
Syntax 2: Image Input Version
1function requestStructuredData<R>(
2 prompt: string,
3 images: string[],
4 schema: JSONSchemaArray | JSONSchemaObject,
5 options?: {
6 provider: "openai" | "gemini" | "anthropic" | "deepseek" | "openrouter" | { custom: string }
7 modelId?: string
8 }
9): Promise<R>
Parameters
prompt (string)
The natural language prompt describing what should be parsed or extracted.
Example:
“Please extract the amount, date, category, and location from the following bill.”
images (string[])
An array of input images for the assistant to process.
Each item must be a Base64-encoded data URI string, such as:
...
- Multiple images are supported, but avoid providing too many to prevent request timeouts or large payloads.
- Useful for tasks like invoice OCR, document extraction, or image-based scene analysis.
schema (JSONSchemaArray | JSONSchemaObject)
Defines the structure of the expected JSON output (see “JSON Schema Definition” below).
options (optional)
-
provider — specifies the AI provider to use:
| Value |
Description |
"openai" |
Use OpenAI models (e.g., GPT-4, GPT-4 Turbo) |
"gemini" |
Use Google Gemini models |
"anthropic" |
Use Anthropic Claude models |
"deepseek" |
Use DeepSeek models |
"openrouter" |
Use the OpenRouter multi-model platform |
{ custom: string } |
Specify a custom API provider name, such as your own backend service |
-
modelId — specifies the model ID (e.g., "gpt-4-turbo", "gemini-1.5-pro", "claude-3-opus").
If not provided, the default model for the selected provider will be used.
Return Value
Returns a Promise that resolves to the structured data object matching the defined schema, with a type of R.
JSON Schema Definition
The schema parameter defines the structure of the expected data.
JSONSchemaType
1type JSONSchemaType = JSONSchemaPrimitive | JSONSchemaArray | JSONSchemaObject
Primitive Type
1type JSONSchemaPrimitive = {
2 type: "string" | "number" | "boolean"
3 required?: boolean
4 description: string
5}
Array Type
1type JSONSchemaArray = {
2 type: "array"
3 items: JSONSchemaType
4 required?: boolean
5 description: string
6}
Object Type
1type JSONSchemaObject = {
2 type: "object"
3 properties: Record<string, JSONSchemaType>
4 required?: boolean
5 description: string
6}
Suppose you have a bill text and want to extract the amount, date, category, and location:
1const someBillDetails = `
2- Amount: $15.00
3- Date: 2024-03-11 14:30
4- Location: City Center Parking
5- Category: Parking
6`
7
8const prompt = `Please parse the following bill information and output structured data: ${someBillDetails}`
9
10const schema: JSONSchemaObject = {
11 type: "object",
12 properties: {
13 totalAmount: {
14 type: "number",
15 required: true,
16 description: "Total bill amount"
17 },
18 category: {
19 type: "string",
20 required: true,
21 description: "Bill category"
22 },
23 date: {
24 type: "string",
25 required: false,
26 description: "Bill date"
27 },
28 location: {
29 type: "string",
30 required: false,
31 description: "Bill location"
32 }
33 }
34}
35
36const data = await Assistant.requestStructuredData(
37 prompt,
38 schema,
39 {
40 provider: "openai",
41 modelId: "gpt-4-turbo"
42 }
43)
44
45console.log(data)
Possible Output
1{
2 "totalAmount": 15.00,
3 "category": "Parking",
4 "date": "2024-03-11 14:30",
5 "location": "City Center Parking"
6}
Example: Parsing Invoice Information from Images
The following example demonstrates how to use requestStructuredData with image input to extract structured invoice data:
1const prompt = "Please extract the total amount, date, and merchant name from the following images."
2
3// const base64Data = UIImage.fromFile("/path/to/image.png").toJPEGBase64String(0.6)
4// const base64Image = `data:image/jpeg;base64,${base64Data}`
5
6const images = [
7 "...", // First invoice
8 "..." // Second invoice
9]
10
11const schema: JSONSchemaObject = {
12 type: "object",
13 properties: {
14 total: { type: "number", description: "Invoice total amount", required: true },
15 date: { type: "string", description: "Invoice date" },
16 merchant: { type: "string", description: "Merchant name" }
17 },
18 description: "Invoice information"
19}
20
21const result = await Assistant.requestStructuredData(
22 prompt,
23 images,
24 schema,
25 { provider: "gemini", modelId: "gemini-1.5-pro" }
26)
27
28console.log(result)
Possible Output:
1{
2 "total": 268.5,
3 "date": "2024-12-01",
4 "merchant": "Shenzhen Youxuan Supermarket"
5}
Usage Notes
-
Ensure the schema is well-defined
The returned data must match the defined schema; otherwise, parsing may fail.
-
Use the required field appropriately
Fields that must always be present should have required: true. Optional fields may omit it.
-
Select the provider and modelId carefully
If you need a specific model (e.g., GPT-4, Gemini Pro), specify it explicitly in options.
-
Supports OpenRouter and Custom Providers
"openrouter" allows using multiple models via the OpenRouter platform.
{ custom: "your-provider" } lets you use your own backend AI service.
-
Supports Image Input for Multimodal Models
- Only some models (e.g., GPT-4 Turbo, Gemini 1.5 Pro) support image input.
- Each image must be a valid Base64
data:image/...;base64, string.
- Avoid passing too many images at once.
-
Add proper error handling
1try {
2 const result = await Assistant.requestStructuredData(prompt, schema, {
3 provider: { custom: "my-ai-backend" },
4 modelId: "my-custom-model"
5 })
6 console.log("Parsed result:", result)
7} catch (err) {
8 console.error("Parsing failed:", err)
9}